SAR Transfer Learning

Catherine Horng – Cornell University

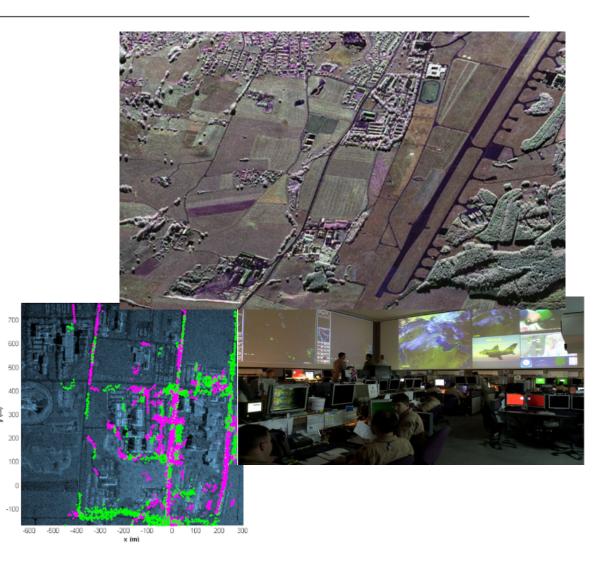
Chris Banas – AFRL/RIEA

Briefing Contents

- Overview
 - SAGE Program In-house Team
 - MSTARS Dataset
 - Transfer Learning Experimentation
 - Wrap Up / Lessons Learned

SAGE In-House R&D Team

- Tasked with supporting the SAGE program and program manager.
- Current Research & Development Areas:
 - Machine Learning (ML) and Synthetic Aperture Radar (SAR)
 - Data Analytics for Sensor Exploitation
 - Software Development Support



Project: Transfer Learning with MSTARS (TLIMS)

<u>Purpose</u>

Leverage Transfer Learning approaches to perform image classification on the MSTARS dataset

Research Questions

- Can we use transfer learning techniques with SAR datasets?
- Can we get good performance starting with ImageNet based models for SAR?
- What ImageNet based models would be best to test with SAR?
- What pre-processing is needed to adapt the models?

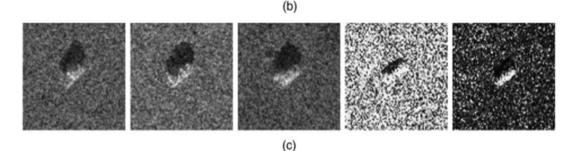
MSTARS Dataset

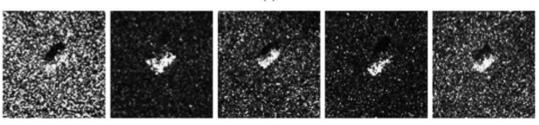
- Collected by the Sandia National Laboratory (SNL) in 1995
- Publically Available
- Low Resolution
 - SPOT SAR
 - 1-meter resolution
- Still Relevant

•

. . .

- Gao, Fei, et al. "A new algorithm for SAR image target recognition based on an improved deep convolutional neural network." *Cognitive Computation* 11.6 (2019): 809-824.
- Huang, Guoquan, et al. "A novel group squeeze excitation sparsely connected convolutional networks for SAR target classification." *International Journal of Remote Sensing* 40.11 (2019): 4346-4360.
- Lewis, Benjamin, et al. "A SAR dataset for ATR development: the Synthetic and Measured Paired Labeled Experiment (SAMPLE)." Algorithms for Synthetic Aperture Radar Imagery XXVI. Vol. 10987. International Society for Optics and Photonics, 2019.





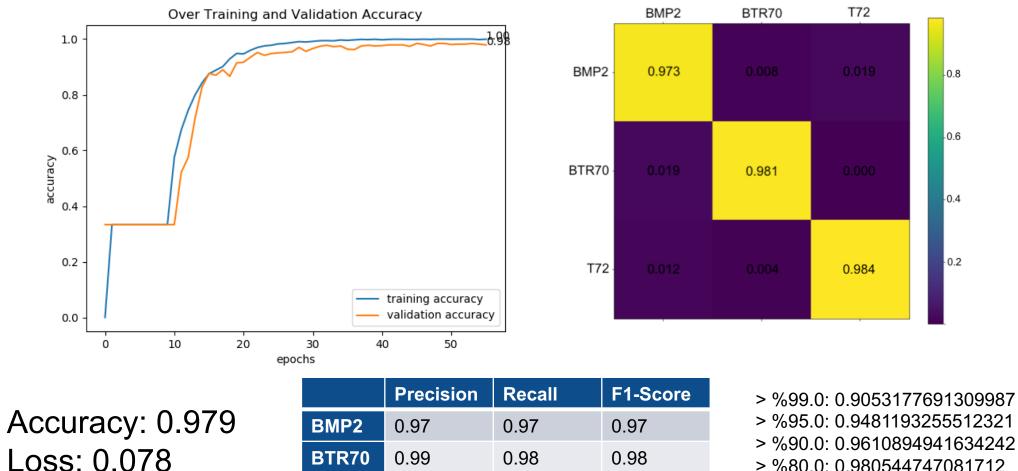
MSTARS Dataset Contd...

Targets (# of)	Target Description	Amount
T-72 (3)	T-72 Tank	3 replicate targets: each collected at 15 & 17 degree dep. angles and full aspect coverage
BMP2 (3)	Infantry Fighting Vehicle	3 replicate targets: each collected at 15 & 17 degree dep. angles and full aspect coverage
BTR-70 (1)	Armored Personnel Carrier	1 target: collected at 15 & 17 degree dep. angles and full aspect coverage
Slicy (1)	Multiple simple geometric shaped static target	CAD Model November '96 Imagery: TBD in Jan '97

- ML technique using a pre-trained model being repurposed for another task
- Used when there's insufficient data for the new task
- Improve overall performance or progress
- Using for recognizing SAR imagery

- Plotting accuracy
- Confusion matrices
 - Columns represent actual labels, rows represent predicted labels
 - Strong diagonal means things are being predicted well
- Precision
 - True Positives
 - True Positives + False Positives
- Recall
- True Positives
- *True Positives* + *False Negatives*
- F1-Score
 - Mean of Precision and Recall
- Predictions above 99%, 95%, 90%, 80% 70%

Transfer Learning on MSTAR



0.98

0.98

0.98

T72

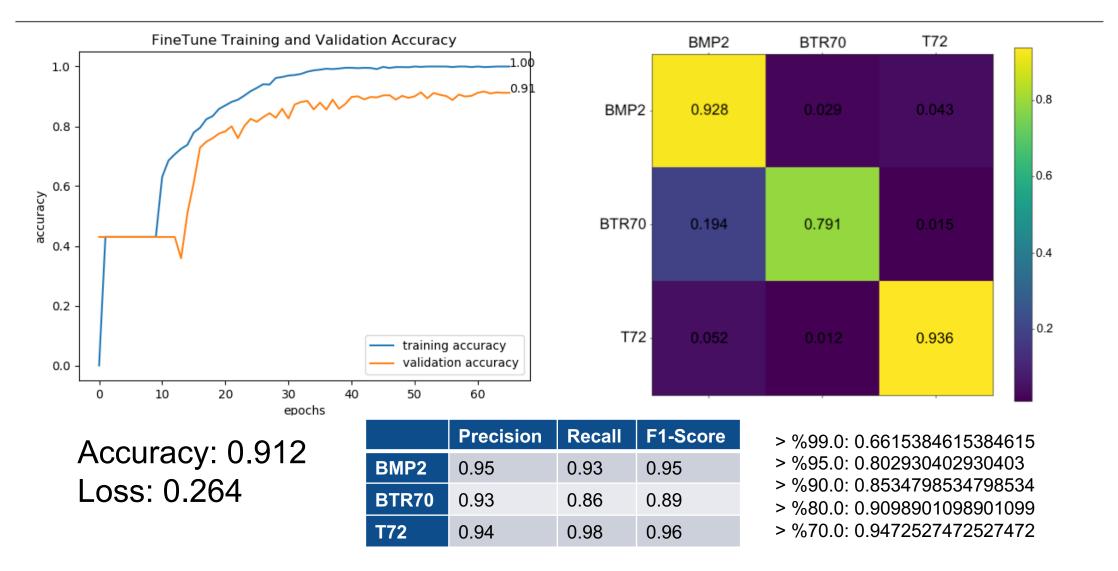
- > %80.0: 0.980544747081712
- > %70.0: 0.9909208819714657

Experimentation

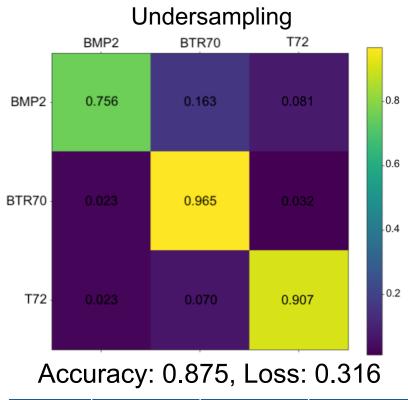
Transfer Learned Model

- Fine-Tuning
- Resampling
- Cross Validation
- Evaluating TL vs. Standard ML
 - ImageNet vs. Random Weights
 - Accuracy Curves Transfer Learned on Different Models
 - Random, ImageNet, CIFAR-10, Greyscale CIFAR-10

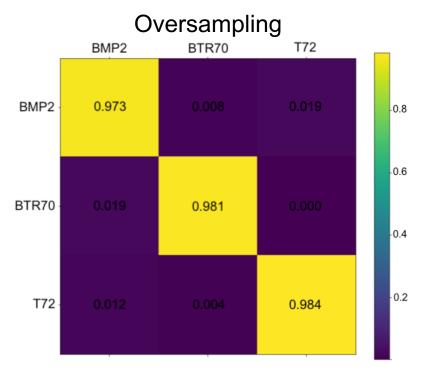
Fine-tuning



Resampling (Under/Over)



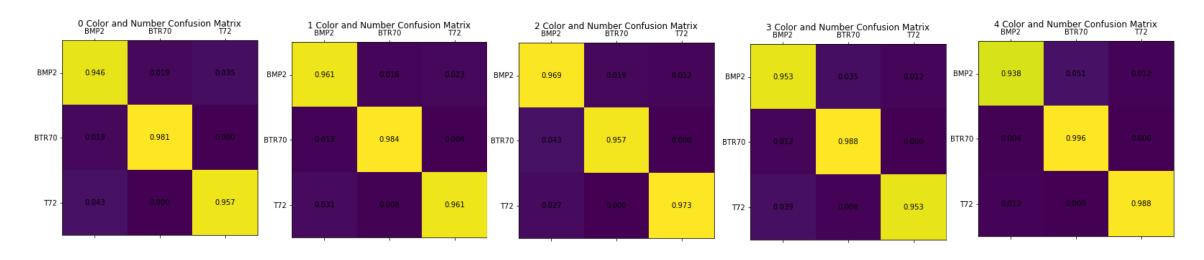
	Precision	Recall	F1-Score
BMP2	0.94	0.76	0.84
BTR70	0.81	0.97	0.88
T72	0.91	0.91	0.87



Accuracy: 0.979, Loss: 0.078

	Precision	Recall	F1-Score
BMP2	0.97	0.97	0.97
BTR70	0.99	0.98	0.98
T72	0.98	0.98	0.98

5-Fold Cross Validation

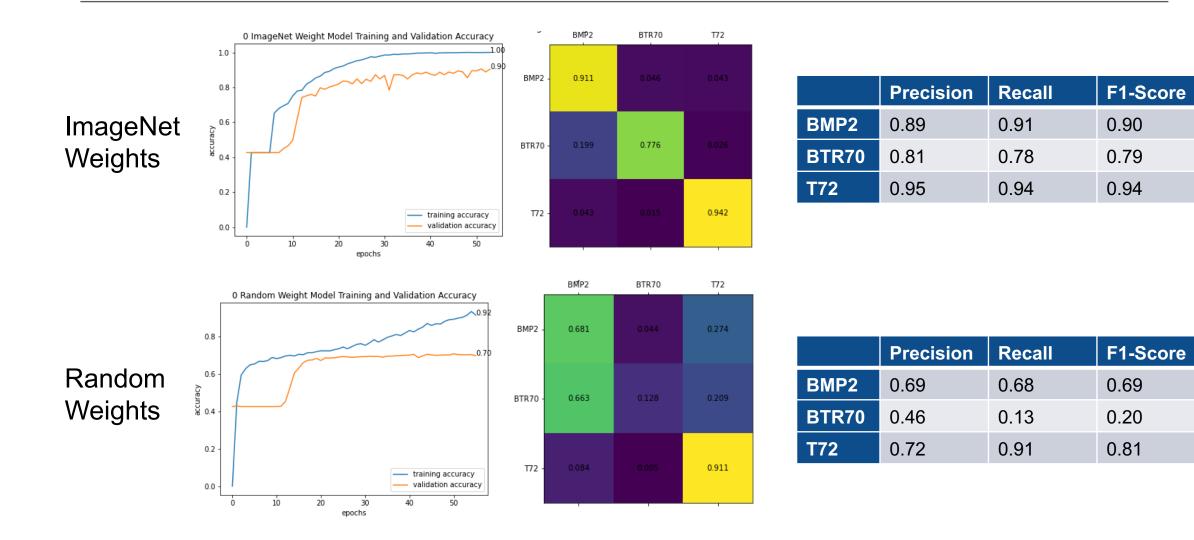


	0	1	2	3	4	Average	StDev
Accuracy	0.96108	0.96887	0.96627	0.96498	0.97405	0.96705	0.00481
Loss	0.13806	0.08896	0.13581	0.10194	0.09145	0.11124	0.02396

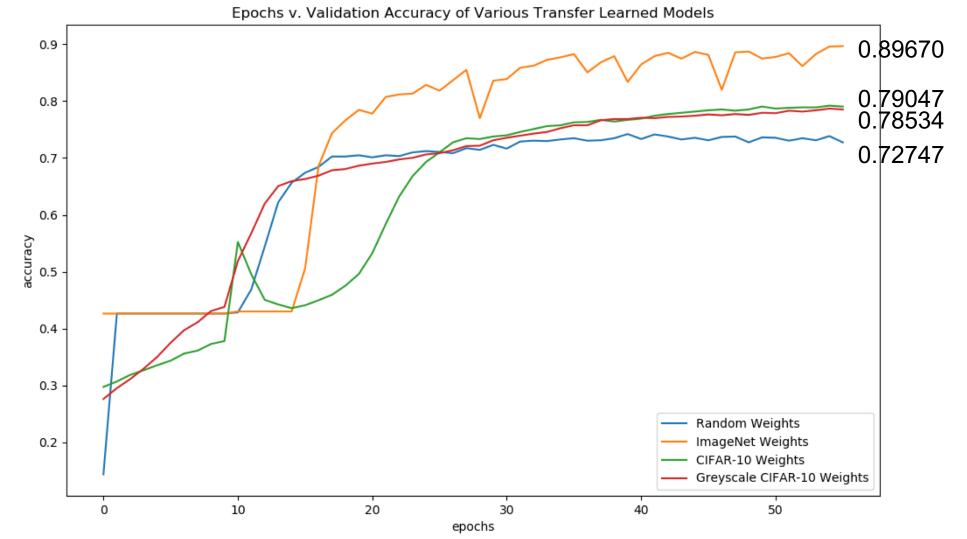
Is ImageNet Helping?

	ImageNet Weights		Random Weights	
	Accuracy	Loss	Accuracy	Loss
0	0.904762	0.275182	0.699634	0.719449
1	0.891575	0.296550	0.703297	0.738245
2	0.901099	0.274274	0.705495	0.719434
3	0.878388	0.319863	0.715751	0.703722
4	0.886447	0.293725	0.731868	0.655388
Average	0.891452	0.292219	0.714652	0.6986042
StDev	0.009909	0.016731	0.014369	0.0352171

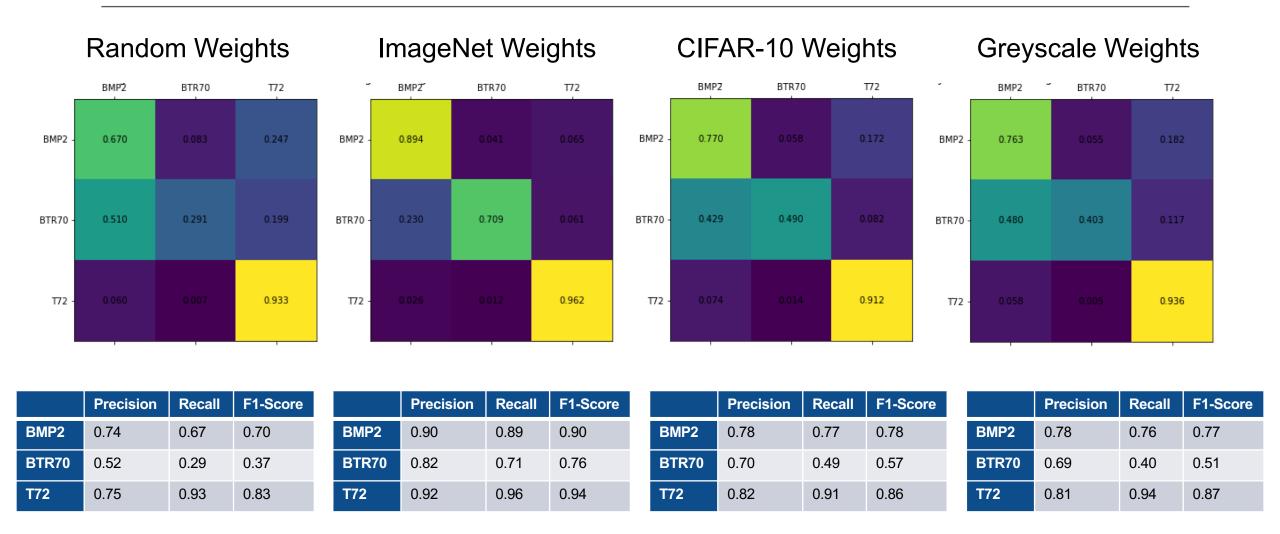
ImageNet v. Random Weights



AFRL Accuracies from Different Transfer Learned Models



Metrics from Different Transfer Learned Models



Wrap Up

Lessons Learned

- ImageNet contains image classification models/datasets for swath/stripmap SAR, but no models specifically for spotlight SAR
- Transfer learning can help improve performance of classifying SAR images

Next Steps

- Test and compare results using more complex datasets (BrightSpark, GOTCHA, classified sets, etc.)
- Look into self-supervised approaches to provide SAR preprocessing
- Leverage this work in support of a JSTARS SAR ML initiative.

Thanks for listening! Questions? Comments?

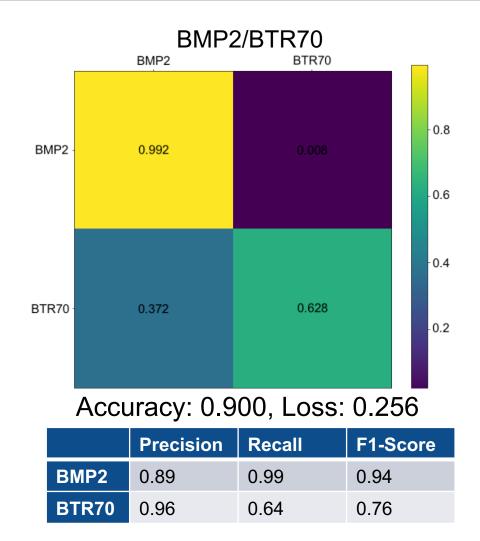
Backup Slides

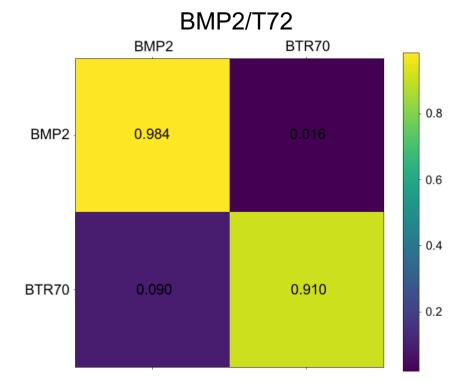
- Develop semi-autonomous software tools that support multi-INT fusion and the multi-domain "phases" of PED
 - Implement in, on, and out of the loop capabilities making faster decisions in challenging conditions and environments to create more complete products
 - Support for single, multiple, and disaggregated sensor capabilities
 - Deliver multi-source fused products for context and assessment

Data augmentation



Class Sampling (BMP2/BTR70, BMP2/T72)

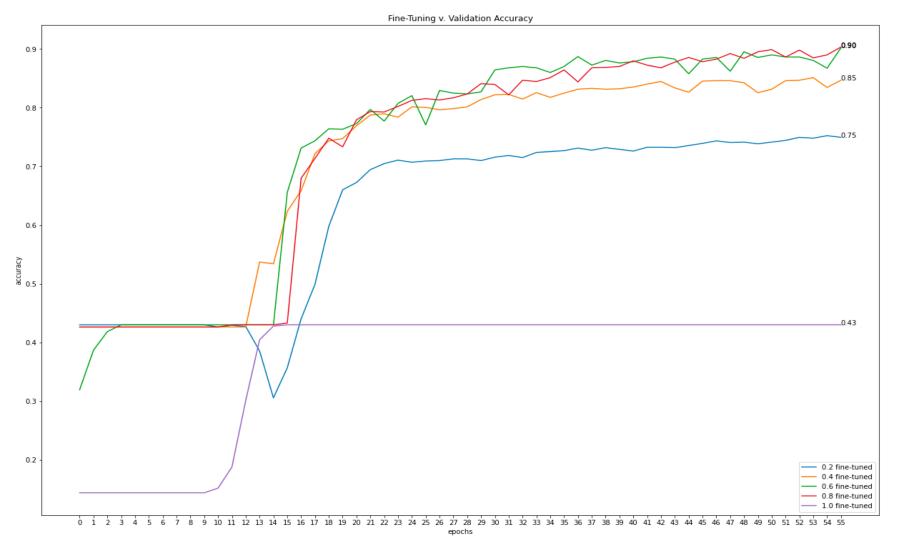




Accuracy: 0.947, Loss: 0.181

	Precision	Recall	F1-Score
BMP2	0.92	0.98	0.95
T72	0.98	0.91	0.95

Fine-Tuning Different Fractions



of Labels v. Accuracy

