
1

SAR Transfer Learning
Catherine Horng – Cornell University

Chris Banas – AFRL/RIEA



3

Briefing Contents 

• Overview
• SAGE Program In-house Team
• MSTARS Dataset
• Transfer Learning Experimentation
• Wrap Up / Lessons Learned



4

SAGE In-House R&D Team

• Tasked with supporting the SAGE 
program and program manager. 

• Current Research & Development 
Areas:

• Machine Learning (ML) and 
Synthetic Aperture Radar (SAR)

• Data Analytics for Sensor 
Exploitation

• Software Development Support 
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Project: Transfer Learning with MSTARS (TLIMS)

Purpose
Leverage Transfer Learning approaches to perform image classification on the 
MSTARS dataset
Research Questions

• Can we use transfer learning techniques with SAR datasets?

• Can we get good performance starting with ImageNet based models for SAR?

• What ImageNet based models would be best to test with SAR?

• What pre-processing is needed to adapt the models? 
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MSTARS Dataset

• Collected by the Sandia National Laboratory (SNL) in 1995

• Publically Available

• Low Resolution

• SPOT SAR

• 1-meter resolution

• Still Relevant

• Gao, Fei, et al. "A new algorithm for SAR image target 
recognition based on an improved deep convolutional neural 
network." Cognitive Computation 11.6 (2019): 809-824.

• Huang, Guoquan, et al. "A novel group squeeze excitation 
sparsely connected convolutional networks for SAR target 
classification." International Journal of Remote Sensing 40.11 
(2019): 4346-4360.

• Lewis, Benjamin, et al. "A SAR dataset for ATR development: 
the Synthetic and Measured Paired Labeled Experiment 
(SAMPLE)." Algorithms for Synthetic Aperture Radar Imagery 
XXVI. Vol. 10987. International Society for Optics and 
Photonics, 2019.

• …
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MSTARS Dataset Contd…

Targets (# of) Target Description Amount

T-72 (3) T-72 Tank

3 replicate targets: each 
collected at 15 & 17 degree 
dep. angles and full aspect 
coverage

BMP2 (3) Infantry Fighting Vehicle

3 replicate targets: each 
collected at 15 & 17 degree 
dep. angles and full aspect 
coverage

BTR-70 (1) Armored Personnel Carrier
1 target: collected at 15 & 17 
degree dep. angles and full 
aspect coverage

Slicy (1) Multiple simple 
geometric shaped static target

CAD Model November '96 
Imagery: TBD in Jan '97
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Approach: Transfer Learning

• ML technique using a pre-trained model being re-
purposed for another task

• Used when there’s insufficient data for the new task
• Improve overall performance or progress
• Using for recognizing SAR imagery
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Metrics

• Plotting accuracy
• Confusion matrices

• Columns represent actual labels, rows represent predicted labels
• Strong diagonal means things are being predicted well

• Precision
• !"#$ %&'()(*$'
!"#$ %&'()(*$' + ,-.'$ %&'()(*$'

• Recall
• !"#$ %&'()(*$'
!"#$ %&'()(*$' + ,-.'$ /$0-)(*$'

• F1-Score
• Mean of Precision and Recall

• Predictions above 99%, 95%, 90%, 80% 70% 
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Transfer Learning on MSTAR

Accuracy: 0.979
Loss: 0.078

> %99.0: 0.9053177691309987
> %95.0: 0.9481193255512321
> %90.0: 0.9610894941634242
> %80.0: 0.980544747081712
> %70.0: 0.9909208819714657

Precision Recall F1-Score
BMP2 0.97 0.97 0.97

BTR70 0.99 0.98 0.98

T72 0.98 0.98 0.98
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Experimentation

Transfer Learned Model

• Fine-Tuning

• Resampling

• Cross Validation

Evaluating TL vs. Standard ML

• ImageNet vs. Random Weights

• Accuracy Curves Transfer Learned on Different Models

• Random, ImageNet, CIFAR-10, Greyscale CIFAR-10
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Fine-tuning

> %99.0: 0.6615384615384615 
> %95.0: 0.802930402930403 
> %90.0: 0.8534798534798534 
> %80.0: 0.9098901098901099 
> %70.0: 0.9472527472527472

Accuracy: 0.912
Loss: 0.264

Precision Recall F1-Score
BMP2 0.95 0.93 0.95

BTR70 0.93 0.86 0.89

T72 0.94 0.98 0.96
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Resampling (Under/Over)

Accuracy: 0.875, Loss: 0.316
Precision Recall F1-Score

BMP2 0.94 0.76 0.84

BTR70 0.81 0.97 0.88

T72 0.91 0.91 0.87

Accuracy: 0.979, Loss: 0.078
Precision Recall F1-Score

BMP2 0.97 0.97 0.97

BTR70 0.99 0.98 0.98

T72 0.98 0.98 0.98

Undersampling Oversampling
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5-Fold Cross Validation

0 1 2 3 4 Average StDev
Accuracy 0.96108 0.96887 0.96627 0.96498 0.97405 0.96705 0.00481
Loss 0.13806 0.08896 0.13581 0.10194 0.09145 0.11124 0.02396
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Is ImageNet Helping?

ImageNet Weights Random Weights
Accuracy Loss Accuracy Loss

0 0.904762 0.275182 0.699634 0.719449
1 0.891575 0.296550 0.703297 0.738245
2 0.901099 0.274274 0.705495 0.719434
3 0.878388 0.319863 0.715751 0.703722
4 0.886447 0.293725 0.731868 0.655388

Average 0.891452 0.292219 0.714652 0.6986042
StDev 0.009909 0.016731 0.014369 0.0352171
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ImageNet v. Random Weights

ImageNet
Weights

Random
Weights

Precision Recall F1-Score
BMP2 0.89 0.91 0.90

BTR70 0.81 0.78 0.79

T72 0.95 0.94 0.94

Precision Recall F1-Score
BMP2 0.69 0.68 0.69

BTR70 0.46 0.13 0.20

T72 0.72 0.91 0.81
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Accuracies from Different Transfer Learned Models

0.89670

0.79047
0.78534
0.72747
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Metrics from Different Transfer Learned Models

Precision Recall F1-Score

BMP2 0.74 0.67 0.70

BTR70 0.52 0.29 0.37

T72 0.75 0.93 0.83

Precision Recall F1-Score

BMP2 0.90 0.89 0.90

BTR70 0.82 0.71 0.76

T72 0.92 0.96 0.94

Precision Recall F1-Score

BMP2 0.78 0.77 0.78

BTR70 0.70 0.49 0.57

T72 0.82 0.91 0.86

Precision Recall F1-Score

BMP2 0.78 0.76 0.77

BTR70 0.69 0.40 0.51

T72 0.81 0.94 0.87

Random Weights ImageNet Weights CIFAR-10 Weights Greyscale Weights
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Wrap Up

Lessons Learned
• ImageNet contains image classification models/datasets for 

swath/stripmap SAR, but no models specifically for spotlight SAR
• Transfer learning can help improve performance of classifying 

SAR images

Next Steps 
• Test and compare results using more complex datasets 

(BrightSpark, GOTCHA, classified sets, etc.)
• Look into self-supervised approaches to provide SAR pre-

processing 
• Leverage this work in support of a JSTARS SAR ML initiative.
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Thanks for listening!
Questions? Comments?
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Backup Slides
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SAGE Program

• Develop semi-autonomous software tools that support multi-INT fusion and 
the multi-domain “phases” of PED 
– Implement in, on, and out of the loop capabilities making faster decisions 

in challenging conditions and environments to create more complete 
products

– Support for single, multiple, and disaggregated sensor capabilities
– Deliver multi-source fused products for context and assessment



23

Data augmentation

Accuracy: 0.790
Loss: 0.524

> %99.0: 0.06373626373626373
> %95.0: 0.18095238095238095
> %90.0: 0.26886446886446885
> %80.0: 0.45567765567765567
> %70.0: 0.6175824175824176

Precision Recall F1-Score
BMP2 0.80 0.78 0.79

BTR70 0.48 0.44 0.46

T72 0.87 0.92 0.90
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Class Sampling (BMP2/BTR70, BMP2/T72)

Accuracy: 0.900, Loss: 0.256
Precision Recall F1-Score

BMP2 0.89 0.99 0.94

BTR70 0.96 0.64 0.76

Accuracy: 0.947, Loss: 0.181
Precision Recall F1-Score

BMP2 0.92 0.98 0.95

T72 0.98 0.91 0.95

BMP2/BTR70 BMP2/T72
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Fine-Tuning Different Fractions
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# of Labels v. Accuracy


