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SAGE In-House R&D Team

» Tasked with supporting the SAGE
program and program manager.

* Current Research & Development
Areas:

* Machine Learning (ML) and
Synthetic Aperture Radar (SAR)

» Data Analytics for Sensor
Exploitation

» Software Development Support
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Project: Transfer Learning with MSTARS (TLIMS)

Purpose

Leverage Transfer Learning approaches to perform image classification on the
MSTARS dataset

Research Questions
« Can we use transfer learning techniques with SAR datasets?

« Can we get good performance starting with ImageNet based models for SAR?
* What ImageNet based models would be best to test with SAR?

« What pre-processing is needed to adapt the models?
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............................. MSTARS Dataset

Collected by the Sandia National Laboratory (SNL) in 1995
Publically Available

Low Resolution
« SPOT SAR
* 1-meter resolution

Still Relevant
» Gao, Fei, et al. "A new algorithm for SAR image target

recognition based on an improved deep convolutional neural
network." Cognitive Computation 11.6 (2019): 809-824.

« Huang, Guoquan, et al. "A novel group squeeze excitation
sparsely connected convolutional networks for SAR target
classification." International Journal of Remote Sensing 40.11
(2019): 4346-4360.

« Lewis, Benjamin, et al. "A SAR dataset for ATR development:
the Synthetic and Measured Paired Labeled Experiment
PLE)." Algorithms for Synthetic Aperture Radar Imagery
XXVI Vol. 10987 International Society for Optics and

Photonics, 2019.
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MSTARS Dataset Contd...

Targets (# of) Target Description m

3 replicate targets: each
collected at 15 & 17 degree
dep. angles and full aspect
coverage

T-72 (3) T-72 Tank

3 replicate targets: each
collected at 15 & 17 degree
dep. angles and full aspect
coverage

BMP2 (3) Infantry Fighting Vehicle

1 target: collected at 15 & 17
Armored Personnel Carrier degree dep. angles and full
aspect coverage

Multiple simple CAD Model November '96
geometric shaped static target Imagery: TBD in Jan '97

Slicy (1)
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Approach: Transfer Learning

* ML technique using a pre-trained model being re-
purposed for another task

» Used when there’s insufficient data for the new task
* Improve overall performance or progress
 Using for recognizing SAR imagery
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Metrics

 Plotting accuracy

Confusion matrices
« Columns represent actual labels, rows represent predicted labels
« Strong diagonal means things are being predicted well

Precision
True Positives

True Positives + False Positives
Recall

True Positives

True Positives + False Negatives

F1-Score
« Mean of Precision and Recall
Predictions above 99%, 95%, 90%, 80% 70%
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Transfer Learning on MSTAR

Over Training and Validation Accuracy BMP2 BTR70 T72
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Experimentation

Transfer Learned Model
* Fine-Tuning
* Resampling
 Cross Validation
Evaluating TL vs. Standard ML
* ImageNet vs. Random Weights

« Accuracy Curves Transfer Learned on Different Models
 Random, ImageNet, CIFAR-10, Greyscale CIFAR-10
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Fine-tuning

FineTune Training and Validation Accuracy

1.0 A

0.8 A

0.6

accuracy

0.4 1

0.2

0.0 4

1.0

0.9

—— training accuracy
validation accuracy

= =

T T T T
0 10 20 30
epochs

Accuracy: 0.912
Loss: 0.264
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Resampling (Under/Over)

Undersampling
BMP2 BTR70 T72

BMP2

BTR70

T72

Accuracy: 0.875, Loss: 0.316

|| Precision | Recall | F1-Score _
EZ 0.94 0.76 0.84
0.81 0.97 0.88

T72 0.91 0.91 0.87
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Oversampling
BMP2 BTR70 T72

BMP2

BTR70

T72

Accuracy: 0.979, Loss: 0.078

|| Precision | Recall | F1-Score _
2N 097 0.97 0.97
0.99 0.98 0.98

L 0.98 0.98 0.98
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5-Fold Cross Validation

0 Color and Number Confusion Matrix 1 Color and Number Confusion Matrix 2 Color and Number Confusion Matrix i i 4 Color and Number Confusion Matrix
BMP2 BTR70 72 BMP2 BTR70 72 BMP2 BTR70 72 3 Color and Number Confusion Matrix BIMP2 BTR70 72

BMP2 BMP2 BMP2 BMP2 BMP2

BTR70 BTR70 BTR70 BTR70 BTR70

T2 ™ ™2 2 2

o 1 12 13 14 Average |StDev

PUEMEETl 096108  0.96887  0.96627  0.96498  0.97405  0.96705  0.00481
IEE 0.13806  0.08896  0.13581  0.10194  0.09145  0.11124  0.02396
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Is ImageNet Helping?

- ImageNet Weights Random Weights

- Accuracy Loss Accuracy Loss

0

1

2

3

4
Average
StDev
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0.904762
0.891575
0.901099
0.878388
0.886447
0.891452
0.009909

0.275182
0.296550
0.274274
0.319863
0.293725
0.292219
0.016731

0.699634
0.703297
0.705495
0.715751
0.731868
0.714652
0.014369

0.719449
0.738245
0.719434
0.703722
0.655388
0.6986042
0.0352171
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0 ImageNet Weight Model Training and Validation Accuracy

ImageNet
Weights -

Random
Weights -
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BMP2

BTR70

BMP2

BETR70

T72

'BvP2 [EE 0.91 0.90
BTR70 [KL 0.78 0.79
e 0.95 0.94 0.94

T2

EZH 069 0.68 0.69
BTR70 [ 0.13 0.20
0.91 0.81

. T72 0.72
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~ " Accuracies from Different Transfer Learned Models

Epochs v. Validation Accuracy of Various Transfer Learned Models
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Metrlcs from Different Transfer Learned Models

Random Weights ImageNet Weights CIFAR-10 Weights Greyscale Weights

BTR70 - BMPZ” BTR70 BMPZ BTR70 BMP2 - BTR70

0.894
0962

BMPZ BMP2 BMP2

BTR70 BTR70 BTR70

BMP2 0.770
BTR70
0912

0933

W 0.74 0.67 0.70
BTR70 [N 0.29 0.37

T72 0.75 0.93 0.83

W 0.90 0.89 0.90
BTR70 XY 0.71 0.76

T72 0.92 0.96 0.94

W 0.78 0.77 0.78
BTR70 [ON{0 0.49 0.57

T72 0.82 0.91 0.86

W 0.78 0.76 0.77
BTR70 ) 0.40 0.51

T72 0.81 0.94 0.87
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Wrap Up

Lessons Learned

* ImageNet contains image classification models/datasets for
swath/stripmap SAR, but no models specifically for spotlight SAR

 Transfer learning can help improve performance of classifying
SAR images
Next Steps

» Test and compare results using more complex datasets
(BrightSpark, GOTCHA, classified sets, etc.)

* Look into self-supervised approaches to provide SAR pre-
processing

 Leverage this work in support of a JSTARS SAR ML initiative.
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Thanks for listening!
Questions? Comments?
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SAGE Program

* Develop semi-autonomous software tools that support multi-INT fusion and
the multi-domain “phases” of PED

— Implement in, on, and out of the loop capabilities making faster decisions
in challenging conditions and environments to create more complete
products

— Support for single, multiple, and disaggregated sensor capabilities
— Deliver multi-source fused products for context and assessment

Human Processed / Computer Assisted

-

Computer Processed / Human Assisted and Analyzed

THE AIR FORCE RESEARCH LABORATORY

22



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Data augmentation

DataAug Training and Validation Accuracy

accuracy
© © © © ©o o ©
L%} w - (8] (=] ~J [#]
1 1 1 1 1 1

o
=

o
o
1

6.78

—— training accuracy
—— validation accuracy

epochs

Accuracy: 0.790
Loss: 0.524
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" Class Sampling (BMP2/BTR70, BMP2/T72)

BMP2/BTR70 BMP2/T72
BMP2 BTR70 BMP2 BTR70

0.8

BMP2 0.992 BMP2
0.6
0.4

BTR70 BTR70
0.2 0.2

Accuracy: 0.900, Loss: 0.256 Accuracy: 0.947, Loss: 0.181

|| Precision | Recall | F1-Score _
I 092 0.98 0.95

T72 0.98 0.91 0.95

| BMP2 [T 0.99 0.94
BTR70 [EE 0.64 0.76
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Fine-Tuning Different Fractions

Fine-Tuning v. Validation Accuracy
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# of Labels v. Accuracy

# of Labels v. Accuracies

0.8

0.7 A

0.6

0.5 ~

Accuracies
—

0.4

0.3 A

0.2

—— ImageNet Weight Accuracies
—— Random Weight Accuracies

T T T
0 50 100 150 200
# of Labels

THE AIR FORCE RESEARCH LABORATORY



