
Optimization Methods for Conditional Generative Adversarial Networks:
Training cGANs on Human-Drawn Sketched Images

Catherine Horng, ch756

Abstract
Conditional generative adversarial networks
(cGANs) have had previous success in training
generative models conditioned on class labels on
datasets such as MNIST. The optimization tech-
niques used to train these models can greatly
affect the time to train and outcomes of these
models. Here we explore the different optimiza-
tion techniques stochastic gradient descent (SGD),
SGD with momentum, and adaptive optimization
methods (Adam, RMSProp, and AdaGrad) on
cGANs. With the growing interest in GANs for
generating images and art, the experiments utilize
crowdsourced human-drawn sketched images to
model the expanding diversity GANs have been
used on in recent years. With these images, while
training wall-clock time greatly varies with choice
of optimizer and hyperparameter with no clear
trend, training with RMSProp does better than the
baseline SGD in statistical performance measures,
with a 46.47% increase in inception score (IS)
and a 27.75% decrease in Fréchet inception dis-
tance (FID) for the best trained model. Adaptive
learning rate methods generally improve upon our
baseline while other methods ultimately perform
poorly.

1. Introduction
Generative adversarial networks (GANs) are a machine
learning framework consisting of a generative and discrimi-
native model trained in conjunction to compete via an adver-
sarial process (Goodfellow et al., 2014). A common analogy
for this framework is to view the generator as a forger who
creates forgeries while the discriminator is an expert who
aims to distinguish between forgeries and authentic exam-
ples (Creswell et al., 2018). Much of the recent research
on GANs focuses on image synthesis which has resulted
in realistic images that can fool even humans (Karras et al.,
2018). While the original GAN framework proposed does
not control what image is generated based on the original
dataset, conditional GANs (cGANs) are a form of GANs in
which the model can generate specific images conditioned

on class labels; this type of GAN has been shown to be
successful on the MNIST dataset, producing realistic digits
(Mirza & Osindero, 2014).

Training cGANs and GANs in general can be difficult (Sax-
ena & Cao, 2020). Because of the adversarial nature of
the system, the training of the generator and discriminator
must be synchronized to ensure that one player does not
overpower the other, thus leading to an unstable system in
which the entire system can not continue to learn (Kodali
et al., 2017). For this reason, choosing an optimization
strategy still remains a challenge for training GANs. Much
like in other deep learning practices, different optimizers
may result in varying results in both statistical and hardware
performance. Common optimizers that can be used to train
deep learning models including GANs include stochastic
gradient descent (SGD), SGD with momentum, Adam, RM-
SProp, and AdaGrad; all of which have resulted in previous
success (Ruder, 2017). However, there is no definitive best
practice for choosing an optimization strategy for training
cGANs as choosing optimizers and hyperparameters are
extremely task dependent.

Recently there has been growing interest in introducing
deep learning into art by means of generative modelling,
particularly through the use of generative adversarial net-
works (Shahriar, 2021). This interest has been aided by the
introduction of datasets such as Google’s Quick, Draw!1,
a crowdsourced dataset of sketches of various categories.
Google’s Quick, Draw! is visually similar to the popular
MNIST dataset as both are vector based hand-drawn images,
but Google’s Quick, Draw! provides more diversity in each
category, thus creating an arguably more difficult but more
applicable task in reference to utilizing GANs to create art.

In this project, we construct a cGAN on Google’s Quick,
Draw! dataset and train it with various optimizers. We also
minimally explore hyperparameters for each optimizer in
order to determine what optimization strategy should be
used in order to generate the most similar images to the
Quick, Draw! Dataset.

1https://quickdraw.withgoogle.com/data



Optimization Methods for Conditional Generative Adversarial Networks

2. Background
2.1. GANs and cGANs

Research into generative models have expanded in recent
years, as has its interest in being applied to different appli-
cations (Saxena & Cao, 2020). Generative models aim to
compute a new data distribution by approximating the true
data distribution and GANs have emerged to be a powerful
method to creating these generative models by utilizing a
discriminator to distinguish between real and fake examples
so that the generator is forced to learn to generate samples
more similar to the data it is being trained on (Goodfellow
et al., 2014). At its core, simple GAN models consist of two
neural networks that compete with each other to optimize
their individual loss functions in the zero-sum game to find
the global Nash equilibrium (Salimans et al., 2016).

Conditional GANs (cGANs) are GANs in which both the
generative and discriminative model are conditioned on
some extra information fed in as input data (?); in our case,
this extra information is the class label so that we can pro-
duce samples of a particular class.

2.2. Training GANs

Training GANs have proven to be an ongoing challenge;
GANs often find it difficult to generate samples with increas-
ing diversity; this results in the mode collapse problem in
which the generative model fails to produce any examples
of a certain class (Mirza & Osindero, 2014). Additionally,
the generative and discriminative networks must train at the
same rate to avoid one network overpowering the other and
thus resulting in a case in which neither network continues
to train (Salimans et al., 2016).

2.3. Quick, Draw! Dataset

Google’s Quick, Draw! Dataset is a collection of 50 million
drawings over 345 categories. The dataset was constructed
by players of the game Quick, Draw! by Google in which
players are given a category to draw in 20 seconds. Each
sample in the dataset has been preprocessed and rendered
into a 28 × 28 grayscale numpy bitmap file, similar to
the MNIST dataset. However, while in the case of the
MNIST dataset, differences within a class can be small (a
drawn number “4” can visually look very similar to another
drawn number “4”) this is not the case for the Quick, Draw!
dataset. A drawn image of an airplane can vary greatly
across different players as can a drawn image of an apple,
for example. This results in a far more diverse dataset than
the MNIST dataset which more closely mirrors the diversity
we would expect to see in art.

2.4. Optimization Methods

2.4.1. STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent (SGD) uses one sample ran-
domly to update the gradient per iteration instead of calcu-
lating the exact value of the gradient (Ruder, 2017); because
the stochastic gradient is an unbiased estimate of the real
gradient, this algorithm is known to converge (Ruder, 2017).
Additionally, it has shown to reduce computational com-
plexity and can converge quicker than traditional gradient
descent. This method is the baseline for all other methods
we will compare to.

As an extension of SGD, momentum is a method which
accelerates the gradient vectors in the right direction (Qian,
1999). This is done by adding a fraction to the updated
weights so that when the gradients remain in the same direc-
tion, updates are increased and when the gradients change
direction, updates are reduced, thus granting us faster con-
vergence and reduced oscillation. This way, momentum
stores an exponential decaying average of past gradients and
utilizes it to determine by how much each step should move
in the direction of the gradient.

2.4.2. ADAGRAD

Adagrad is a method to adapt the learning rate by performing
smaller updates based on historical gradients (Duchi et al.,
2011). The gradients are accumulated and used to adjust the
learning rate in each iteration. AdaGrad automatically tunes
the learning rate but the global learning rate still requires
tuning, and as the model continues to be trained, the learning
rate will tend to zero, and thus the weights will not continue
to update.

2.4.3. RMSPROP

RMSProp was proposed as a solution to the tendency of the
learning rate to go to zero in AdaGrad (Ruder, 2017). Rather
than utilizing all historical gradients, RMSProp utilizes an
exponential decaying average of past squared gradients. Ad-
ditionally, there is no need for a default learning rate as it is
no longer needed in the update rule. This method is almost
identical to Adadelta.

2.4.4. ADAM

Adaptive moment estimation (Adam) is again a method
to compute adaptive learning rates (Kingma & Ba, 2017).
It stores an exponential decaying average of past squared
gradients, similar to RMSProp. It also stores an exponen-
tially decaying average of past gradients as for momentum.
Because of this, Adam can be seen as a combination of
RMSProp and momentum.



Optimization Methods for Conditional Generative Adversarial Networks

3. Methods
3.1. Optimization Methods

We test five optimization methods: stochastic gradient de-
scent (SGD), SGD with momentum, AdaGrad, RMSProp,
and Adam. For each optimization strategy we do a simple
hyperparameter exploration via grid search for the learn-
ing rate, α, having α vary between 0.1, 0.01, 0.005, 0.001,
0.0005, 0.0001, and 0.00001. Additionally, for SGD with
momentum, we let the momentum hyperparameter β be 0.9
or 0.99. This results in a total of 42 models trained.

RMSProp has the additional hyperparameter ρ, which is the
discounting factor for the history gradient. This is set to the
default value of 0.9. Adam has the additional hyperparame-
ters β1 and β2. These are set to the default values of 0.9 and
0.999.

We compare these models to the baseline of a cGAN trained
with SGD as the optimization method with the traditional
standard learning rate of 0.1.

Each model is trained to convergence for 20 epochs on
a subset of the Quick, Draw! dataset, comprised on 10
classes, each with 4000 images in each class. The classes
are ‘airplane’, ‘apple’, ‘bus’, ‘fish’, ‘key’, ‘nose’, ‘snake’,
‘purse’,‘star’, and ‘tree’. An example of each class is shown
in Figure 1.

Figure 1. Examples of each of the classes from Google’s Quick,
Draw! Dataset.

3.2. Model Architecture

Because of the success convolutional neural networks have
demonstrated on image data (Creswell et al., 2018), we use
these networks to build the GAN generator and discrimi-
nator. Building off the conditional GAN from the Keras
code example in generative deep learning 2, the generator
consists of a dense layer with LeakyReLU activation, two
deconvolution layers, each with LeakyReLU activation and
a final convolution layer with a sigmoid activation and the

2https://keras.io/examples/generative/conditionalgan/

discriminator consists of two convolution layers, each with
LeakyReLU activation and a final global max pooling and
dense layer.

3.3. Evaluation

Evaluating GANs is another challenge in and of itself (Borji,
2018). In evaluating the generation of synthetic images from
GANs, human judgement has been the most reliable metric
(Borji, 2018). While we will evaluate using visual inspec-
tion, we will also use quantitative statistical scores as well
as wall-clock time to evaluate the hardware performance.
While training, we can also measure the loss of the genera-
tive and discriminative models, however the losses of these
models often are not indicative of the true performance, thus
we omit reporting them in evaluating performance.

3.3.1. HARDWARE PERFORMANCE

Wall-clock training time is used to evaluate the hardware per-
formance of training the cGANs with different optimizers.
Each model was trained for 20 epochs and the wall-clock
time of training was measured. The models were trained on
Google Colab with the Nvidia Tesla K80 GPU.

3.3.2. STATISTICAL PERFORMANCE

Inception Score: The Inception Score (IS) is likely the
most commonly used score for GAN evaluation. It utilizes
a pre-trained neural network to capture how classifiable
and diverse generated images are with respect to the class
labels (Salimans et al., 2016). Traditionally, in the evalu-
ation of real images, the calculation of IS is implemented
using Inception Net (thus the name of the score) trained on
ImageNet, but for the purposes of evaluating hand-drawn
images from the Quick, Draw! Dataset, the calculation of
IS is implemented using a classification CNN trained on the
Quick, Draw! Dataset. Generated images more similar to
the real distribution of images will result in a higher IS, so
we would like to find which optimizers produce a high IS.
The minimum for this score is 1.

Fréchet Inception Distance: Fréchet Inception Distance
(FID) embeds generated examples into a features space
given by a layer of a CNN and views the embedding as
a continuous multivariate Gaussian to estimate the mean
and covariance of the generated and real examples (Heusel
et al., 2018). The distance of these two Gaussians is the
Fréchet distance. Similarly to IS, FID is implemented using
Inception Net, but again for the purposes of our evaluation,
we use the same classification CNN trained on the Quick,
Draw! Dataset. Generated images more similar to the real
distribution of images will result in a lower FID score, with
the minimum score being 0, so we would like to find which
optimizers produce a small FID score.



Optimization Methods for Conditional Generative Adversarial Networks

Classification Model: While the Quick, Draw! classifier is
not the focus of this paper, because our evaluation metrics
are contingent on it, it would seem to be beneficial to discuss
the model accuracy and loss. The classifier consists of two
layers of a convolution layer with ReLU activation and max
pooling layer and two layers of a fully connected layer and a
dense layer. The classifier trained to 98.94% accuracy on the
training data and 88.58% accuracy on the test data. Because
this classifier does not classify all input data correctly, the
IS and FID scores may be deflated.

4. Results
4.1. Wall-Clock Time

The wall-clock times for each optimization method is shown
in Table 5. A plot of the wall-clock time as a function of
learning rate for each of the optimization method is shown
in Figure 2. The baseline SGD with a learning rate of 0.1
trained in 1143.6545 seconds.

Figure 2. Graph of wall-clock training time for each optimization
method varying learning rates.

It seems that no optimization method results in overall lower
or higher wall-clock training time. Each model training
with different hyperparameter values result in a varying wall
clock times, with no clear trend.

4.2. Inception Score and Fréchet Inception Distance

The Inception Scores and Fréchet Inception Distances for
each optimization method are shown in Table 6. The base-
line SGD with a learning rate of 0.1 achieves an IS of 2.5631
and a FID of 0.4136.

Plots of the IS and FID as a function of learning rate for
each of the optimization methods is shown in Figures 3
and 4. First we note that a lower IS generally corresponds

to a higher FID and a higher IS corresponds to a lower FID,
indicating that IS and FID are indeed measuring some latent
quality in the images generated.

Figure 3. Graph of Inception Scores for each optimization method
varying learning rates.

Figure 4. Graph of Fréchet inception distances for each optimiza-
tion method varying learning rates.

The top 8 IS and their corresponding optimizers are shown
in Table 1. Three of the top scores are from models trained
using RMSProp as the optimizer. The second highest score
was from a model trained using Adam, however no other
top IS was from a model trained from Adam. The other
top scores are from models that use AdaGrad and SGD as
optimizers.

The top IS score for each optimizer is shown in Table 2.
We see that the top performing generator was trained with
RMProp followed by Adam, AdaGrad, and finally the SGD



Optimization Methods for Conditional Generative Adversarial Networks

Table 1. Top-8 IS scores with optimizer, learning rate, and percent
change from SGD with learning rate 0.1 baseline score.

OPTIMIZER α IS % CHANGE

RMSPROP 0.0005 3.7543 46.47%
ADAM 0.0001 3.6794 43.55%
ADAGRAD 0.01 3.5522 38.59%
RMSPROP 0.001 3.4854 35.98%
ADAGRAD 0.005 3.3105 29.16%
RMSPROP 0.0001 3.2442 26.57%
SGD 0.005 3.0543 19.16%
SGD 0.01 2.9883 16.59%

Table 2. Top IS per optimization method with optimizer, learning
rate, and percent change from SGD with learning rate 0.1 baseline
score.

OPTIMIZER α IS % CHANGE

RMSPROP 0.0005 3.7543 46.47%
ADAM 0.0001 3.6794 43.55%
ADAGRAD 0.01 3.5522 38.59%
SGD 0.005 3.0543 19.16%
SGD, β = 0.9 0.0005 2.9008 13.18%
SGD, β = 0.99 0.00001 1.7037 -33.53%

methods.

The lowest 8 FID and their corresponding optimizers are
show in Table 3. The lowest two scores were from models
trained using RMSProp. The other optimizers that achieve
low FID are AdaGrad, Adam, and SGD.

The lowest FID score for each optimizer is shown in Table 4.
We see that the top performing generator was again trained
with RMProp followed by Adagrad, Adam, and finally the
SGD methods as well.

For SGD, lower learning rates result in poorer images gener-
ated, while a learning rate of 0.005 producing our best model
trained using SGD. Using a learning rate that is smaller than
0.005 appears to result in overall worse generators, but us-
ing higher learning rates also do not appear to produce very
good generators.

Adding momentum, learning rates that larger than 0.001 and
small than 0.0001 do not appear to do well with a β value
of 0.9, however, with a β value of 0.99, only optimization
methods with very small learning rates appear result in any
kind of image at all. This leads to the conclusion that SGD
with momentum in general does not appear to result in well
trained generators. Five of the seven models with varying
learning rates achieve an IS of 1.000, as seen in Table 6.

For AdaGrad, learning rates that 0.01 and 0.005 achieve
fairly good IS and FID out of the experiments done. Again,
with learning rates that are too high or too low, the models
appear not to achieve any ability to generate feasible images.

Table 3. Bottom-8 FID scores with optimizer, learning rate, and
percent change from SGD with learning rate 0.1 baseline score.

OPTIMIZER α FID % CHANGE

RMSPROP 0.001 0.0572 -86.17%
RMSPROP 0.0001 0.0971 -76.52%
ADAGRAD 0.01 0.1246 -69.87%
ADAM 0.0001 0.1431 -65.40%
SGD 0.01 0.1713 -58.58%
ADAM 0.00001 0.1802 -56.43%
ADAGRAD 0.005 0.1943 -53.02%
SGD 0.005 0.2019 -51.18%

Table 4. Lowest FID per optimization method with optimizer,
learning rate, and percent change from SGD with learning rate 0.1
baseline score.

OPTIMIZER α FID % CHANGE

RMSPROP 0.001 0.0572 -86.17%
ADAGRAD 0.01 0.1246 -69.87%
ADAM 0.0001 0.1431 -65.40%
SGD 0.01 0.1713 -58.58%
SGD, β = 0.9 0.001 0.3127 -24.40%
SGD, β = 0.99 0.00001 1.0308 149.23%

For RMSProp, almost all models trained with this optimizer
results in a model that achieves higher than the minimum IS.
It also has trained the models that produced images with the
highest IS and lowest FID out of all trained models. Using
RMSProp appears to allow for more learning rates to result
in acceptable generators as learning rates from 0.0001 to
0.001 all achieve more than minimum IS and only two of the
seven models trained with this optimizer generate images
with the minimum IS.

Using Adam, smaller learning rates produce better gener-
ators, with the best generator being produced by training
with a learning rate of 0.0001. While this produces a fairly
high IS and low FID in comparison to other methods, other
learning rates with Adam fail to train generators anywhere
near the quality of other generators.

There is no optimization method does universally well; all
methods result in at least one of the top IS and one of the
lower FID (with the exception of SGD with momentum).
All optimization methods train models that produce images
with an IS of 1.000, the minimum score, for some hyper-
parameter. This reinforces the idea that hyperparameter is
critical in the training of cGANs.

That being said, out of all optimization methods RMSProp
appears to have the most success in the experiments run as
most models built with varying learning rates result in build-
ing generators that produce images with better statistical
performance numbers.



Optimization Methods for Conditional Generative Adversarial Networks

4.3. Generated Images

Images generated from the baseline SGD with a learning
rate of 0.1 is shown in Figure 5(a). We also include images
from the generators that achieve the top three IS,

• RMSProp, α = 0.0005 (Figure 5(b)),
• Adam, α = 0.0001 (Figure 5(c)),
• AdaGrad, α = 0.01 (Figure 5(d)),

lowest three FID,

• RMSProp, α = 0.001 (Figure 5(e)),
• RMSProp, α = 0.0001 (Figure 5(f)),

and any generators that appear on both the top 8 IS and
bottom 8 FID list (and are not already shown)

• AdaGrad, α = 0.005 (Figure 5(g)), and
• SGD, α = 0.005 (Figure 5(h)).

By visual inspection in Figure 5(a), we see that generator
trained by the baseline SGD results in images that don’t
appear to be distinguishable. Images from one class are not
distinguishable from images from another class, neither are
they distinguishable as their given class.

The generator with the highest IS was trained using RM-
SProp (α = 0.0005) and its produced images are shown in
Figure 5(b). This optimization method produced a generator
that creates distinguishable images. Images produced as
‘airplane’ is clearly distinguishable from images produced
as ‘apple’. A few of the other classes include images that
are not clearly the labelled sketch, notable ‘nose’ does not
appear to generate any great images of noses, however, the
images within the class are similar to each other.

The other generators appear to have some success in gener-
ating images of certain classes; many of the generators are
able to draw an ‘apple’, for example. However, it appears
that more complicated images such as ‘bus’ still prove to be
quite difficult to generate, likely due to the complexity of
some of the training data (as seen in Figure 1). Some gen-
erators don’t appear to produce any kind of distinguishable
images, notable in the case of the generator trained with
SGD (α = 0.005) as seen in Figure 5(h).

Across all generators, there appears to be confusion of
classes; for example in the generator trained with RMSProp
(α = 0.001), images that are generated as ‘fish’ and ‘key’
appear to be very similar as seen in Figure 5(e). Addition-
ally, none of the images appear to be very clean; there is
some amount of noise in almost every image, unlike in the
training data.

5. Discussion
In terms of hardware performance, there appears to be no
consensus as to whether one optimizer consistently performs

better than another. Each optimizer and hyperparameter
produce varying times to train and thus there appear to be
no tradeoff in terms of speed in utilizing one optimizer over
another. However, because these models were trained on
Google Colab in which resources are free, there is some
uncertainty involved in what resources are available at any
given time 3.

In terms of statistical measures, RMSProp performs the best,
producing multiple generators with varying learning rates
that outperform the baseline generator. In general, meth-
ods with adaptive learning rates (RMSProp, AdaGrad, and
Adam) outperform the baseline performance. Because of
the importance of synchronized training between the gen-
erator and discriminator, the methods that perform smaller
updates based on past gradients tend to do well.

SGD with momentum frequently fails to produce generators
that compare to the baseline. Because the extra momentum
term tends to grant faster convergence, the discriminator
often trains far faster than the generator, thus leading to a
case in which the discriminator converges and the generator
fails to update, producing an overall subpar generator.

Because Adam can be seen as a combination of RMSProp
and momentum, we see that Adam performs better than
SGD with momentum but worse than RMSProp. Adam
might benefit from the adaptive learning rate from RMSProp
but take damage from the momentum term.

Because of the varying success within each optimization
method, this indicates that hyperparameter optimization is
extremely important in the training of these models. As the
rate of training for the discriminator and generator must be
balanced to avoid one model overpowering another (usually
the discriminator overpowering the generator), this tuning
of hyperparameters must ensure that the discriminator does
not train so fast so that the generator can not train at all.

6. Future Work
In order to further improve upon the generation of hand-
drawn images from this dataset, there are a few methods to
consider.

As seen from the experiments, hyperparameters are crucial
for the success of an optimization algorithm and different
values of certain hyperparameters may work on one op-
timizer but fail to produce a well trained generator with
another optimizer. For this reason, further experiments into
hyperparameter optimization could produce better results
and further determine what practices should be set in place
in utilizing different optimizers.

The experiments in this paper use one model architecture

3https://research.google.com/colaboratory/faq.html



Optimization Methods for Conditional Generative Adversarial Networks

((a)) Images from each class drawn using a cGAN generator
trained with SGD (α = 0.1).

((b)) Images from each class drawn using a cGAN generator
trained with RMSProp (α = 0.0005).

((c)) Images from each class drawn using a cGAN generator
trained with Adam (α = 0.00011).

((d)) Images from each class drawn using a cGAN generator
trained with AdaGrad (α = 0.01).

((e)) Images from each class drawn using a cGAN generator
trained with RMSProp (α = 0.001).

((f)) Images from each class drawn using a cGAN generator
trained with RMSProp (α = 0.0001).

((g)) Images from each class drawn using a cGAN generator
trained with AdaGrad (α = 0.005).

((h)) Images from each class drawn using a cGAN generator
trained with SGD (α = 0.005).

Figure 5. Images from each class drawn using a cGAN generator trained with various optimizers and hyperparameters.



Optimization Methods for Conditional Generative Adversarial Networks

from the Keras tutorial for conditional GANs. While this
architecture is shown to produce quite good results for the
MNIST dataset (which was used in the example), because of
the increasing diversity within examples in Google’s Quick,
Draw! dataset, more exploration into the model architecture
may result in better images.

Finally, because of the fast convergence of the discriminator
that renders the generator unable to train, methods to make
it more difficult for the discriminator can be used in order
to help the generator train. Methods such as instance noise,
label smoothing and label noise (Salimans et al., 2016) may
help by impeding our discriminator and thus helping our
generator train.

7. Conclusion
Training cGANs are a difficult task. It becomes especially
difficult with increasing diversity of images such as in hand-
drawn sketched images. The optimization method and
hyperparameters chosen can greatly affect the training of
cGANs and the overall quality of images generated by the
generator. There appears to be little tradeoff in choosing
one optimizer over another in terms of time to train. While
no optimization method dominates in how well images are
generated, RMSProp trains models that do well over most
hyperparameters, producing more consistent generators that
create images with better IS and FID scores. Methods with
adaptive learning rates generally do better, allowing both the
generator and discriminator to train at the same rate. SGD
with momentum trains models that do not do as well, as
the momentum term pushes the model to converge faster,
allowing the discriminator to converge quickly but impeding
the training of the generator.

References
Borji, A. Pros and cons of gan evaluation measures, 2018.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K.,
Sengupta, B., and Bharath, A. A. Generative adver-
sarial networks: An overview. IEEE Signal Process-
ing Magazine, 35(1):53–65, Jan 2018. ISSN 1053-
5888. doi: 10.1109/msp.2017.2765202. URL http:
//dx.doi.org/10.1109/MSP.2017.2765202.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgra-
dient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 12
(61):2121–2159, 2011. URL http://jmlr.org/
papers/v12/duchi11a.html.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks, 2014.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium, 2018.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. On conver-
gence and stability of gans, 2017.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets, 2014.

Qian, N. On the momentum term in gradient de-
scent learning algorithms. Neural Networks,
12(1):145–151, 1999. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(98)00116-6.
URL https://www.sciencedirect.com/
science/article/pii/S0893608098001166.

Ruder, S. An overview of gradient descent optimization
algorithms, 2017.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans, 2016.

Saxena, D. and Cao, J. Generative adversarial networks
(gans): Challenges, solutions, and future directions, 2020.

Shahriar, S. Gan computers generate arts? a survey on visual
arts, music, and literary text generation using generative
adversarial network, 2021.

http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.1109/MSP.2017.2765202
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166


Optimization Methods for Conditional Generative Adversarial Networks

Table 5. Wall-clock times of model training in seconds.

OPTIMIZER α TIME (SEC)

SGD 0.1 1143.6545
SGD 0.01 1270.1910
SGD 0.005 1281.0649
SGD 0.001 1082.2541
SGD 0.0005 1094.4061
SGD 0.0001 1082.0765
SGD 0.00001 1284.9729
SGD, β = 0.9 0.1 1461.4370
SGD, β = 0.9 0.01 900.4115
SGD, β = 0.9 0.005 1462.9218
SGD, β = 0.9 0.001 1466.2967
SGD, β = 0.9 0.0005 1283.1591
SGD, β = 0.9 0.0001 1460.5355
SGD, β = 0.9 0.00001 1105.1937
SGD, β = 0.99 0.1 1250.2964
SGD, β = 0.99 0.01 1076.9800
SGD, β = 0.99 0.005 1271.8372
SGD, β = 0.99 0.001 1278.3819
SGD, β = 0.99 0.0005 1282.5708
SGD, β = 0.99 0.0001 1460.2150
SGD, β = 0.99 0.00001 1104.7404
ADAGRAD 0.1 1091.8243
ADAGRAD 0.01 1091.7528
ADAGRAD 0.005 1113.0960
ADAGRAD 0.001 1290.3016
ADAGRAD 0.0005 1473.5040
ADAGRAD 0.0001 1291.7477
ADAGRAD 0.00001 1126.5501
RMSPROP 0.1 1074.6614
RMSPROP 0.01 1458.6742
RMSPROP 0.005 1275.1958
RMSPROP 0.001 1091.1327
RMSPROP 0.0005 1287.8691
RMSPROP 0.0001 1465.1194
RMSPROP 0.00001 1646.3563
ADAM 0.1 1464.9537
ADAM 0.01 1094.6501
ADAM 0.005 1285.4971
ADAM 0.001 1282.0837
ADAM 0.0005 1108.7439
ADAM 0.0001 1098.3483
ADAM 0.00001 1471.2483

Table 6. Final IS and FID scores.

OPTIMIZER α IS FID

SGD 0.1 2.5631 0.4136
SGD 0.01 2.9883 0.1713
SGD 0.005 3.0543 0.2019
SGD 0.001 1.0000 1.7237
SGD 0.0005 1.0000 1.1689
SGD 0.0001 1.0000 0.9219
SGD 0.00001 1.0000 1.0649
SGD, β = 0.9 0.1 1.1569 1.3850
SGD, β = 0.9 0.01 1.0000 1.2116
SGD, β = 0.9 0.005 1.0000 1.2062
SGD, β = 0.9 0.001 2.7845 0.3127
SGD, β = 0.9 0.0005 2.9008 0.3515
SGD, β = 0.9 0.0001 2.2658 0.6073
SGD, β = 0.9 0.00001 1.0000 0.9269
SGD, β = 0.99 0.1 NAN 1.2116
SGD, β = 0.99 0.01 1.0000 1.1938
SGD, β = 0.99 0.005 1.0000 1.2563
SGD, β = 0.99 0.001 1.0000 1.1761
SGD, β = 0.99 0.0005 1.0000 1.2382
SGD, β = 0.99 0.0001 1.0000 1.2588
SGD, β = 0.99 0.00001 1.7037 1.0308
ADAGRAD 0.1 1.0000 1.0959
ADAGRAD 0.01 3.5522 0.1246
ADAGRAD 0.005 3.3105 0.1943
ADAGRAD 0.001 2.2567 0.7149
ADAGRAD 0.0005 1.0000 1.1952
ADAGRAD 0.0001 1.0000 1.2529
ADAGRAD 0.00001 1.0000 1.0591
RMSPROP 0.1 1.0000 1.2109
RMSPROP 0.01 2.1374 0.6843
RMSPROP 0.005 1.0000 1.2260
RMSPROP 0.001 3.4854 0.0572
RMSPROP 0.0005 3.7543 0.2988
RMSPROP 0.0001 3.2442 0.0971
RMSPROP 0.00001 2.6036 0.4852
ADAM 0.1 1.0000 1.1689
ADAM 0.01 1.0000 1.0807
ADAM 0.005 1.0000 1.1257
ADAM 0.001 1.1413 0.9888
ADAM 0.0005 2.2878 0.4557
ADAM 0.0001 3.6794 0.1431
ADAM 0.00001 2.4504 0.1802


